试证下列函数在z平面上解析 并分别求出其导函数. (1)f(z)=x3+3x2yi一3xy2一y3i
试证下列函数在z平面上解析,并分别求出其导函数. (1)f(z)=x3+3x2yi一3xy2一y3i; (2)f(z)=ex(xcosy—ysin y)+iex(ycos y+xsin y); (3)f(z)=sin x.cosh y+i cos x.sinh y; (4)f(z)=cos x.cosh y—i sin x.sinh y.
请帮忙给出正确答案和分析,谢谢!
参考解答
正确答案:(1)由u(xy)=x3一3xy2v(xy)=3x2y—y3则 ux=3x2一3y2uy=一6xyvx=6xyvy=3x2一3y2 故uxuyvxvy在z平面上连续且满足C.一R方程 ux=vyuy=vx. 所以f(z)在z平面上解析且f(z)=u+ivx=(3x2一3y2)+i6xy=3z2. (2)因为u(xy)=ex(xcos y—ysin y)v(xy)=ex(ycos y+xsin y)则 u=ex(xcos y—ysin y+cos y)u=ex(一xsin y—ycos y—sin y) v=ex(ycos y+xsin y+sin y)v=ex(cos y—ysin y+xcos y) 故uxuyvxvy在z平面上连续且满足C.一R方程 ux=vyuy=vx. 所以f(z)在z平面上解析且有f'(z)=ux+ivx =ex(xcos y—ysin y+cos y)+iex(ycos y+xsin y+sin y) =ex[x(cos y+isin y)+iy(cos y+isin y)+(cos y+isin y) =ex.eiy(z+iy+1) =ez(z+1).(3)因为u(xy)=sin xcosh yv(xy)=cos xsinh y则u=cos xcosh yv=一sin xsinh yuy=sin xsinh yvy=cos xcosh y故uxuyvxvy在z平面上连续且满足C—R方程 ux=vyuy=vx所以f(z)在z平面上解析且f'(z)=ux+ivx =cos xcosh y—isin xsinh y (4)因为u(xy)=cos xcosh yv(xy)=一sin xsinh y则 ux=一sin xeosh yuy=cos x sinh y vx=一cos x sinh yvx=一sin xcogh y故uxuyvxvy在z平面上连续。且满足C—R方程 ux=vyuy=vx所以f(z)在z平面上解析且f'(z)=ux+ivx=一sin xcosh y—icos xsinh y
(1)由u(x,y)=x3一3xy2,v(x,y)=3x2y—y3,则ux=3x2一3y2,uy=一6xy,vx=6xy,vy=3x2一3y2,故ux,uy,vx,vy在z平面上连续,且满足C.一R方程ux=vy,uy=vx.所以f(z)在z平面上解析,且f(z)=u+ivx=(3x2一3y2)+i6xy=3z2.(2)因为u(x,y)=ex(xcosy—ysiny),v(x,y)=ex(ycosy+xsiny),则u=ex(xcosy—ysiny+cosy),u=ex(一xsiny—ycosy—siny)v=ex(ycosy+xsiny+siny),v=ex(cosy—ysiny+xcosy)故ux,uy,vx,vy在z平面上连续,且满足C.一R方程ux=vy,uy=vx.所以f(z)在z平面上解析,且有f'(z)=ux+ivx=ex(xcosy—ysiny+cosy)+iex(ycosy+xsiny+siny)=ex[x(cosy+isiny)+iy(cosy+isiny)+(cosy+isiny)=ex.eiy(z+iy+1)=ez(z+1).(3)因为u(x,y)=sinxcoshy,v(x,y)=cosxsinhy,则u=cosxcoshy,v=一sinxsinhy,uy=sinxsinhy,vy=cosxcoshy故ux,uy,vx,vy在z平面上连续,且满足C—R方程ux=vy,uy=vx所以,f(z)在z平面上解析,且f'(z)=ux+ivx=cosxcoshy—isinxsinhy(4)因为u(x,y)=cosxcoshy,v(x,y)=一sinxsinhy,则ux=一sinxeoshy,uy=cosxsinhy,vx=一cosxsinhy,vx=一sinxcoghy故ux,uy,vx,vy在z平面上连续。且满足C—R方程ux=vy,uy=vx所以,f(z)在z平面上解析,且f'(z)=ux+ivx=一sinxcoshy—icosxsinhy
相似问题
若f(z)在圆|z|<R内解析 f(0)=0 |f(z)|≤M<+∞ 则 (1)|f(z)|≤; (
若f(z)在圆|z|<R内解析,f(0)=0,|f(z)|≤M<+∞,则 (1)|f(z)|≤; (2)若在圆内有一点z(0<|z|<R)使 请帮忙给出正确答案和分析,谢谢!
设z=x+iy 试求 (1)|ei-2z|; (2)请帮忙给出正确答案和分析 谢谢!
设z=x+iy,试求 (1)|ei-2z|; (2)请帮忙给出正确答案和分析,谢谢!
设(1)f(z)在|z|≤1上连续;(2)对任意的r(0<r<1) ∫|z|=rf(z)dz=0
设(1)f(z)在|z|≤1上连续;(2)对任意的r(0<r<1), ∫|z|=rf(z)dz=0, 试证 ∫|z|=1f(z)dz=0.请帮忙给出正确答案和分析,谢谢!
设解析函数w=f(z)=P(x y)+iQ(x y)的实部P只为u=x2+Ay2的函数 试求常数A之
设解析函数w=f(z)=P(x,y)+iQ(x,y)的实部P只为u=x2+Ay2的函数,试求常数A之值(A=0除外),并给出f(z)之式.请帮忙给出正确答案和分析,谢谢!
若|z|≤R 试证 |sin z|≤cosh R |cos z|≤cosh R.请帮忙给出正确答案和
若|z|≤R,试证 |sin z|≤cosh R,|cos z|≤cosh R.请帮忙给出正确答案和分析,谢谢!