试证若z=z+iy 试证: (1)sin z=sin x.cosh y+icos x.sinh y;
试证若z=z+iy,试证: (1)sin z=sin x.cosh y+icos x.sinh y; (2)cos z=cos x.cosh y—isin x.sin
若z=z+iy,试证: (1)sin z=sin x.cosh y+icos x.sinh y; (2)cos z=cos x.cosh y—isin x.sinh y; (3)|sin z|2=sin2 x+sinh2 y; (4)|cos z|2=cos2 x+sinh2 y.
请帮忙给出正确答案和分析,谢谢!
参考解答
正确答案:(1)sin z=sin(x+iy) =sinxcos(iy)+cos xsin(iy) =sin xcosh y+icos xsinh y. (2)cos z=cos(x+iy) =cosxcos(iy)一sin xsin(iy) =cos xcosh y+isin xsinh y. (3)|sin z|2=|sin xcosh y+icos xsinh y|2 =sin2 xcosh2 y+cos2 xsinh2y =sin2x(cosh2y—sinh2y)+(cos2z+sin2 x)sinh2y =sin2z+sinh2y. (4)|cos z|2=|cos xcosh y—isin xsinh y|2 =cos2xcosh2y一sin2xsinh2y =cos2x(sinh2y+1)+sin2xsinh2y =cos2z+cos2xsinh2y+sin2xsinh2y =cos2x+(cos2x+sin2x)sinh2 y =cos2xsinh2y.
(1)sinz=sin(x+iy)=sinxcos(iy)+cosxsin(iy)=sinxcoshy+icosxsinhy.(2)cosz=cos(x+iy)=cosxcos(iy)一sinxsin(iy)=cosxcoshy+isinxsinhy.(3)|sinz|2=|sinxcoshy+icosxsinhy|2=sin2xcosh2y+cos2xsinh2y=sin2x(cosh2y—sinh2y)+(cos2z+sin2x)sinh2y=sin2z+sinh2y.(4)|cosz|2=|cosxcoshy—isinxsinhy|2=cos2xcosh2y一sin2xsinh2y=cos2x(sinh2y+1)+sin2xsinh2y=cos2z+cos2xsinh2y+sin2xsinh2y=cos2x+(cos2x+sin2x)sinh2y=cos2xsinh2y.
相似问题
试证多值函数f(z)=在割去线段[一1 1]的z平面上可以分出四个单值解析分支.求函数在割线上岸取正
试证多值函数f(z)=在割去线段[一1,1]的z平面上可以分出四个单值解析分支.求函数在割线上岸取正值的那个分支在点z=±i的值.请帮忙给出正确答案和分析,谢谢!
设(1)函数f(z)在区域D内解析 f(z)≠常数; (2)C为D内任一条周线 只要讨论下列级数的敛
设(1)函数f(z)在区域D内解析,f(z)≠常数; (2)C为D内任一条周线,只要讨论下列级数的敛散性:讨论下列级数的敛散性: 请帮忙给出正确答案和分析,谢谢!
若函数f(z)在区域D内解析 C为D内以a b为端点的直线段. 试证:存在数λ |λ|≤1 与ξ∈C
若函数f(z)在区域D内解析,C为D内以a,b为端点的直线段. 试证:存在数λ,|λ|≤1,与ξ∈C使得 f(b)一f(a)=λ(b一a)f(ξ).请帮忙给出正确答案和分析,谢谢!
试证:|Im z|≤|sin z|≤eImz.请帮忙给出正确答案和分析 谢谢!
试证:|Im z|≤|sin z|≤eImz.请帮忙给出正确答案和分析,谢谢!
试证试验证:试验证:请帮忙给出正确答案和分析 谢谢!
试证试验证:试验证:请帮忙给出正确答案和分析,谢谢!
